Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Mol Biol Transl Sci ; 200: 1-12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37739550

RESUMEN

Antibiotic resistant microorganisms are significantly increasing due to horizontal gene transfer, mutation and overdose of antibiotics leading to serious health conditions globally. Several multidrug resistant microorganisms have shown resistance to even the last line of antibiotics making it very difficult to treat them. Besides using antibiotics, an alternative approach to treat such resistant bacterial pathogens through the use of bacteriophage (phage) was used in the early 1900s which however declined and vanished after the discovery of antibiotics. In recent times, phage has emerged and gained interest as an alternative approach to antibiotics to treat MDR pathogens. Phage can self-replicate by utilizing cellular machinery of bacterial host by following lytic and lysogenic life cycles and therefore suitable for rapid regeneration. Application of phage for detection of bacterial pathogens, elimination of bacteria, agents for controlling food spoilage, treating human disease and several others entitles phage as a futuristic antibacterial armamentarium.


Asunto(s)
Bacteriófagos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Alimentos , Mutación
2.
Front Microbiol ; 14: 1194916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378283

RESUMEN

Introduction: This study aimed to identify and characterize novel siderophore-producing organisms capable of secreting high quantities of the iron-binding compounds. In the course of this, two not yet reported halophilic strains designated ATCHAT and ATCH28T were isolated from hypersaline, alkaline surface waters of Salar de Llamará and Laguna Lejía, respectively. The alkaline environment limits iron bioavailability, suggesting that native organisms produce abundant siderophores to sequester iron. Methods: Both strains were characterized by polyphasic approach. Comparative analysis of the 16S rRNA gene sequences revealed their affiliation with the genus Halomonas. ATCHAT showed close similarity to Halomonas salicampi and Halomonas vilamensis, while ATCH28T was related closest to Halomonas ventosae and Halomonas salina. The ability of both strains to secrete siderophores was initially assessed using the chromeazurol S (CAS) liquid assay and subsequently further investigated through genomic analysis and NMR. Furthermore, the effect of various media components on the siderophore secretion by strain ATCH28T was explored. Results: The CAS assay confirmed the ability of both strains to produce iron-binding compounds. Genomic analysis of strain ATCHAT revealed the presence of a not yet reported NRPS-dependant gene cluster responsible for the secretion of siderophore. However, as only small amounts of siderophore were secreted, further investigations did not lie within the scope of this study. Via NMR and genomic analysis, strain ATCH28T has been determined to produce desferrioxamine E (DFOE). Although this siderophore is common in various terrestrial microorganisms, it has not yet been reported to occur within Halomonas, making strain ATCH28T the first member of the genus to produce a non-amphiphilic siderophore. By means of media optimization, the produced quantity of DFOE could be increased to more than 1000 µM. Discussion: Phenotypic and genotypic characteristics clearly differentiated both strains from other members of the genus Halomonas. Average nucleotide identity (ANI) values and DNA-DNA relatedness indicated that the strains represented two novel species. Therefore, both species should be added as new representatives of the genus Halomonas, for which the designations Halomonas llamarensis sp. nov. (type strain ATCHAT = DSM 114476 = LMG 32709) and Halomonas gemina sp. nov. (type strain ATCH28T = DSM 114418 = LMG 32708) are proposed.

3.
Prog Mol Biol Transl Sci ; 198: 15-24, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37225318

RESUMEN

In the past few decades, epigenetics has emerged as an important area of study to enable a better understanding of gene expression and its regulation. Due to epigenetics, stable phenotypic changes have been possible without alterations in DNA sequences. Epigenetic changes may occur due to DNA methylation, acetylation, phosphorylation and other such mechanisms which alter the level of gene expression without making any difference to DNA sequences. In this chapter, CRISPR-dCas9 used to bring about epigenome modifications for regulating gene expression towards a therapeutic approaches for treating human diseases have been discussed.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Metilación de ADN , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Acetilación , Metilación de ADN/genética , Epigénesis Genética , Epigenómica
4.
Bioeng Transl Med ; 8(2): e10381, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925687

RESUMEN

Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.

5.
Prog Mol Biol Transl Sci ; 196: 261-270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813361

RESUMEN

Amyloid precursor protein (APP) is a membrane protein expressed in several tissues. The occurrence of APP is predominant in synapses of nerve cells. It acts as a cell surface receptor and plays a vital role as a regulator of synapse formation, iron export and neural plasticity. It is encoded by the APP gene that is regulated by substrate presentation. APP is a precursor protein activated by proteolytic cleavage and thereby generating amyloid beta (Aß) peptides which eventually form amyloid plaques that accumulate in Alzheimer's disease patients' brains. In this chapter, we highlight basic mechanism, structure, expression patterns and cleavage of amyloid plaques, and its diagnosis and potential treatment for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide , Proteínas de la Membrana
6.
Prog Mol Biol Transl Sci ; 194: 333-345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36631197

RESUMEN

Cardiovascular disease (CVD) is the one of major global health issues with approximately 30% of the mortality reported in the mid-income population. Low-density lipoprotein (LDL) plays a crucial role in development of CVD. High LDL along with others forms a plaque and blocks arteries, resulting in CVD. The present chapter deals with the mechanism of receptor-mediated endocytosis of LDL and its management by drugs such as statins and PCSK9 inhibitors along with dietary supplementation for health improvements.


Asunto(s)
Enfermedades Cardiovasculares , Endocitosis , Receptores de LDL , Humanos , Enfermedades Cardiovasculares/metabolismo , LDL-Colesterol/metabolismo , Proproteína Convertasa 9 , Receptores de LDL/metabolismo
7.
Bioresour Technol ; 370: 128522, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36565819

RESUMEN

Machine learning (ML) applications have become ubiquitous in all fields of research including protein science and engineering. Apart from protein structure and mutation prediction, scientists are focusing on knowledge gaps with respect to the molecular mechanisms involved in protein binding and interactions with other components in the experimental setups or the human body. Researchers are working on several wet-lab techniques and generating data for a better understanding of concepts and mechanics involved. The information like biomolecular structure, binding affinities, structure fluctuations and movements are enormous which can be handled and analyzed by ML. Therefore, this review highlights the significance of ML in understanding the biomolecular interactions while assisting in various fields of research such as drug discovery, nanomedicine, nanotoxicity and material science. Hence, the way ahead would be to force hand-in hand of laboratory work and computational techniques.


Asunto(s)
Aprendizaje Automático , Proteínas , Humanos , Proteínas/metabolismo , Unión Proteica
8.
Prog Mol Biol Transl Sci ; 191(1): 141-151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36270675

RESUMEN

Gut microbiota is a highly dense population of different kinds of bacteria residing in the gut which co-evolves with the host. It engages in a number of metabolic and immunological activities. Gut microbiota is associated with maintenance of health, and unbalanced microbiota contributes in the development of several diseases. Alteration of beneficial gut microbiota population triggers gastrointestinal diseases including irritable bowel syndrome, inflammatory bowel disease, celiac disease, colorectal cancer, and many others. Gut microbiota can be affected by multiple factors such as diet, stress, genetic variations. In this chapter, we highlight how gut microbiota plays a key role in pathogenesis of gastrointestinal disease.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Disbiosis , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Gastrointestinales/complicaciones
9.
Microb Cell Fact ; 21(1): 100, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643549

RESUMEN

The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals.


Asunto(s)
Ácidos Nucleicos , Vías Biosintéticas/genética , Biotecnología , Ingeniería Metabólica , Biología Sintética
10.
J Control Release ; 343: 703-723, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35149141

RESUMEN

A single gene mutation can cause a number of human diseases that affect the quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid a disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease. Delivery of CRISPR-components being a pivotal aspect in proving its effectiveness, various proven delivery systems have also been briefly discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Terapia Genética/métodos , Mutación , Calidad de Vida
11.
Prog Mol Biol Transl Sci ; 186(1): 191-201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35033284

RESUMEN

Microfluidics is an exponentially growing area and is being used for numerous applications from basic science to advanced biotechnology and medicines. Microfluidics provides a platform to the research community for studying and building new strategies for the diagnosis and therapeutics applications. In the last decade, microfluidic have enriched the field of diagnostics by providing new solutions which was not possible with conventional detection and treatment methods. Microfluidics has the ability to precisely control and perform high-throughput functions. It has been proven as an efficient and rapid method for biological sample preparation, analysis and controlled drug delivery system. Microfluidics plays significant role in personalized medicine. These personalized medicines are used for medical decisions, practices and other interventions as well as for individual patients based on their predicted response or risk of disease. This chapter highlights microfluidics in developing personalized medical applications for its applications in diseases such as cancer, cardiovascular disease, diabetes, pulmonary disease and several others.


Asunto(s)
Microfluídica , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Dispositivos Laboratorio en un Chip , Medicina de Precisión
12.
Bioengineered ; 12(1): 8594-8613, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607509

RESUMEN

COVID-19 is one of the most severe global health crises that humanity has ever faced. Researchers have restlessly focused on developing solutions for monitoring and tracing the viral culprit, SARS-CoV-2, as vital steps to break the chain of infection. Even though biomedical engineering (BME) is considered a rising field of medical sciences, it has demonstrated its pivotal role in nurturing the maturation of COVID-19 diagnostic technologies. Within a very short period of time, BME research applied to COVID-19 diagnosis has advanced with ever-increasing knowledge and inventions, especially in adapting available virus detection technologies into clinical practice and exploiting the power of interdisciplinary research to design novel diagnostic tools or improve the detection efficiency. To assist the development of BME in COVID-19 diagnosis, this review highlights the most recent diagnostic approaches and evaluates the potential of each research direction in the context of the pandemic.


Asunto(s)
Ingeniería Biomédica/métodos , Prueba de Ácido Nucleico para COVID-19/métodos , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Inteligencia Artificial , Técnicas Biosensibles , Sistemas CRISPR-Cas , Humanos , Inmunoensayo , Microfluídica , Salud Pública , SARS-CoV-2
13.
Pathogens ; 10(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921583

RESUMEN

Biofilms are bacterial communities encased in a rigid yet dynamic extracellular matrix. The sociobiology of bacterial communities within a biofilm is astonishing, with environmental factors playing a crucial role in determining the switch from planktonic to a sessile form of life. The mechanism of biofilm biogenesis is an intriguingly complex phenomenon governed by the tight regulation of expression of various biofilm-matrix components. One of the major constituents of the biofilm matrix is proteinaceous polymers called amyloids. Since the discovery, the significance of biofilm-associated amyloids in adhesion, aggregation, protection, and infection development has been much appreciated. The amyloid expression and assembly is regulated spatio-temporarily within the bacterial cells to perform a diverse function. This review provides a comprehensive account of the genetic regulation associated with the expression of amyloids in bacteria. The stringent control ensures optimal utilization of amyloid scaffold during biofilm biogenesis. We conclude the review by summarizing environmental factors influencing the expression and regulation of amyloids.

14.
Artículo en Inglés | MEDLINE | ID: mdl-31681738

RESUMEN

Cell-free protein synthesis (CFPS) system is a simple, rapid, and sensitive tool that is devoid of membrane-bound barriers, yet contains all the mandatory substrates, biomolecules, and machineries required for the synthesis of the desired proteins. It has the potential to overcome loopholes in the current in vivo production systems and is a promising tool in both basic and applied scientific research. It facilitates a simplified organization of desired experiments with a variety of reaction conditions, making CFPS a powerful tool in biological research. It has been used for the expansion of genetic code, assembly of viruses, and in metabolic engineering for production of toxic and complex proteins. Subsequently, CFPS systems have emerged as potent technology for high-throughput production of membrane proteins, enzymes, and therapeutics. The present review highlights the recent advances and uses of CFPS systems in biomedical, therapeutic, and biotechnological applications. Additionally, we highlight possible solutions to the potential biosafety issues that may be encountered while using CFPS technology.

15.
Biophys Chem ; 254: 106244, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31446252

RESUMEN

Macromolecules present in the intracellular environment of a cell are densely packed, resulting in a highly crowded cytosolic environment. This crowded milieu influences several biochemical equilibria such as diffusibility and association constant of biomolecules which impose a serious impact on cellular functions as well as its processes. A number of in silico and in vitro studies have been reported till date about using synthetic crowding agents for resembling such a crowding environment within the cell. Lately, it has been realized that synthetic crowders are not suitable for mimicking the intrinsic environment of the cell. In this study, proteins were assumed to be the major biological molecule which contributes to the crowding environment. We have semi-theoretically determined the total protein concentration within an individual E. coli MG1655 cell which changes notably as the growth curve proceeds from 0.2 to 1.0 OD600. The average range of total cellular protein concentration throughout the batch culture was found to be in the range of 15.2 to 178 fg/fL of cytoplasmic volume. The fundamental knowledge gained through the study was translated to applied research in the form of an equation. We propose an equation that could help to mimic the OD600 dependent crowding environment present within a single cell of E. coli in the desired volume of reaction solution. In a nutshell, the equation provides quantitative estimation of the volume of culture required to prepare the cell lysate for biomimicking the intracellular crowding environment in vitro. This finding provides a new insight into the cellular cytosolic environment that could be used as a platform to frame more cells like environment in cell-free protein synthesis (CFPS) system for synthetic biology applications.


Asunto(s)
Algoritmos , Escherichia coli/metabolismo , Sustancias Macromoleculares/química , Biomasa , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-30968019

RESUMEN

The triterpene squalene is a natural compound that has demonstrated an extraordinary diversity of uses in pharmaceutical, nutraceutical, and personal care industries. Emboldened by this range of uses, novel applications that can gain profit from the benefits of squalene as an additive or supplement are expanding, resulting in its increasing demand. Ever since its discovery, the primary source has been the deep-sea shark liver, although recent declines in their populations and justified animal conservation and protection regulations have encouraged researchers to identify a novel route for squalene biosynthesis. This renewed scientific interest has profited from immense developments in synthetic biology, which now allows fine-tuning of a wider range of plants, fungi, and microorganisms for improved squalene production. There are numerous naturally squalene producing species and strains; although they generally do not make commercially viable yields as primary shark liver sources can deliver. The recent advances made toward improving squalene output from natural and engineered species have inspired this review. Accordingly, it will cover in-depth knowledge offered by the studies of the natural sources, and various engineering-based strategies that have been used to drive the improvements in the pathways toward large-scale production. The wide uses of squalene are also discussed, including the notable developments in anti-cancer applications and in augmenting influenza vaccines for greater efficacy.

18.
J Cell Biochem ; 120(3): 2721-2725, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30362590

RESUMEN

The CRISPR-Cas system is a key technology for genome editing and regulation in a wide range of organisms and cell types. Recently, CRISPR-Cas-based diagnostic platform has shown idealistic properties for pathogen detection. Integrating the CRISPR-Cas platform along with lateral flow system allows rapid, sensitive, specific, cheap, and reliable diagnostic. It has the potential to be in frontline for not only pathogen detection during the epidemic outbreak, but also cancer, and genetic diseases.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas de Diagnóstico Molecular , ADN/análisis , Humanos , Reacción en Cadena de la Polimerasa , ARN/análisis , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...